

Introduction to WebSocket RPC Compiler

ObjectRiver has built a Cloud Compiler that is capable of parsing many metadata
languages, and generating complex solutions. WebSocket RPC was developed to
facilitate running ObjectRiver Programmable Metadata Compiler in the cloud.

This manual is describing the WebSocket RPC metadata needed to generate a JSR356
compliant application.

Download
ObjectRiver Cloud Compiler can be downloaded from our web site once you join our
forum at objectriver/forum

You will need your forum name and password to run the compiler.

Cloud Compiler SDK Directories

The cloud compiler tool kit is all jars files.
 or/lib

o webrpcrt
WebRPC runtime which includes some XDR and JSON marshalling
classes.

 or/sdk
o cloudcclient.jar

ObjectRiver Cloud Compiler client.
o Intellijplugin

Intellij plugin for the Cloud Compiler
o Eclipseplugin

Eclipse plugin for the Cloud Compiler

 or/tools/tyrus1.7
This is the client/server Tyrus runtime. WebRPC can be run completely
standalone during development. Tyrus is the WebSocket reference
implementation and is bundled with Glassfish.

 or/tools/tyrus_android
This the Tyrus client compiled with Java 1.6 for the Android. It is the full client
which support callbacks etc…

 testing/webrpc/bean
Test example for bean definitions.

 testing/webrpc/binaryparam
Test example which passes a BinaryStream from client to server.

 testing/webrpc/chat
Chat application example

 testing/webrpc/enumeration
Enumerated types example

 testing/webrpc/excep

Exception example

 testing/webrpc/hello
Hello World example from JavaOne 2014

 testing/webrpc/list
List example

 testing/webrpc/rtnbinary
Example which returns a BinaryStream and return argument

 testing/webrpc/sendreply
Special RPC type where the application sends the reply instead of just returning
from the method. See RPC type SendReplyMethod.

 testing/webrpc/simple
Not so simple sample.

 testing/webrpc/syncwait
Special RPC where the client application is responsible for calling wait.

Executing Cloud Compiler
The compiler currently ships with a IDE plugin for Intellij. Installing this plugin is the easiest way to execute the
compiler. The installation instructions detail how to configure this plug within the Intellij IDE.

The following a instructions for directly calling CloudCompilerClient.class directly from another IDE like Eclipse or
NetBeans.

Usage: CloudCompilerClient model.lang -U user pw [-Iinclude -Ddefine -OoutDir -SsrcDir]
Example: CloudCompilerClient model/hello.webrpc –U steveoriver fredfred –O. –S./src

Users will need to specify the name of the model and their ObjectRiver forum name and
password. The cloud compiler determines the language based on the model extension.
WebSocket model would have an extension of .webrpc.

Arguments:

 model is the language the is being processed.
 -U user password
 -Iinclude
 -Ddefine
 -Ooutdir
 -Ssrcdir

There is also –Ddefine variables. The CloudCompiler uses CPP (‘C’ PreProcessor) on all
metadata. There are optional defines for the IDE and destination Web Server.
[-Dintellij [-Dtomcat | -Dwildfly | -Dglassfish]]
These defines will generate the appropriate artifacts for building the server WAR file. If
you are using the plugin, these options will be automatic.

WebSockets Jsr356

This is an excellent reference book that describes the JSR356 Java interface to
WebSockets.

4

• Buy this book.
• This book describes the JSR356

Java WebSocket API
specification.

• Today we are going to look at an
example of a professional
document style RPC mapping for
WebSockets.

JSR356 WebSocket API

WebRpc is a description language describing remote procedure calls (RPC). From the
description the ObjectRiver Cloud Compiler generates readable code that complies with
the JSR356 specification.

The generated code uses the document style RPC pattern for implementing a
request/reply RPC call.

Sockets for the Web
WebSockets is a state-full, full duplex communications platform for the web. It is low
latency because it has tiny headers and supports binary transmission of data.

Probably it’s biggest benefit, is that it runs over the same port 80 connection as any other
web application.

3

WebSockets into port 80

Application Web
Server

HTTP 5 request gets promoted to WebSockets

HTTP 5 ws://objectriver.net/… Port 80

Fire Wall

Bi-directional full duplex WebSockets

Basic WebSockets

If you create a basic WebSocket application it looks like the following slide.

7

Endpoints

Java
Application

Web Serverstub

• Endpoints are listeners on their own thread.

• WebSockets is truly peer to peer. There is no request/response type methods in
the architecture

• For synchronous requests, asynchronous responses must be synchronized on the
client.

• Each client has it’s own connection and thread on the server.

Endpoints are listeners on a thread

endpoint

endpoint

stub

Request

Response
Server

Endpoint

Client
Endpoint

This diagram show two threads on the client, and one thread on the server. Each endpoint
runs on its own thread, listening for inbound asynchronous messages. For a each client
the server processes requests in serial. The server does not process the next message until
it returns from it’s OnMessage() routine.

So, out of the box, the system is not truly peer to peer if you are doing any kind of
synchronous requests. The protocol by definition only processes asynchronous messages.

WebRPC breaks synchronous requests into multiple asynchronous messages and
synchronizes them together.

Peer to Peer

If you truly wants peer to peer full duplex communication, your app would look like this.

8

Full duplex

• True peer to peer requires a thread that is separate from the endpoint.

• This is required for an application that needs to turn the connection
around where the server becomes the client and client becomes server.

Separate execution thread on server

Java
Application

Web Serverstub endpoint

endpoint

Request

Request

stub

Response

Response

Client
Endpoint

Server
Endpoint

In this example, the server has an extra thread that behaves like and independent client.
You can have synchronous requests because the system is behaving like two separate
applications. See @OnThreadMethod for more information. Many times we just see the
client initiate the communication to the web server, and the session is turned around so
the server becoming the client and the client becomes the server.

Hello World

Here is a “Hello World” example showing how the WebRpc Cloud Compiler breaks a
simple RPC request into multiple asynchronous messages.

9

 Hello World interface definition

– @Sync String[] hello(@in String hello, @in Boolean throwSomething) throws HelloException;

 Breakdown of request/responses

– void hello(String hello, Boolean throwSomething);

– void helloResponse(String[] result);

– void raiseHelloException(HelloException ex);

– void raiseWebSocketException(WebSocketException ex);

Not your father’s Hello World

Java
Application

Web Server
hello(String hello, Boolean throwSomething);

helloResponse(String[] result);

raiseHelloException(HelloException ex);
raiseWebSocketException(WebSocketException ex);

Hello World

Client
Endpoint

Server
Endpoint

 Notice how the single method hello is broken down into four asynchronous messages.
One request named hello() and for responses named helloResponse(),
raiseHelloException() and raiseWebSocketException().

The final piece of the puzzle is synchronizing the response to create a synchronous
request. The WebRPC mapping generates a Java wait/notify logic which synchronizes the
request with the replies.

10

Java wait/notify synchronizes request

hello_wait()

Client EndpointApplication Client Stub WebSockets Web
Server

RPC Request

RPC Response

OnMethod()

RPC Response

Java Notify
session

Java Wait
session

Network

•Client sends request to server

•Client blocks on session with Java wait() with timeout from client handle

• Client endpoint in onMessage() wakes up client with Java notify synchronising two asynchronous
methods

Interface Definition

Definition language for describing the RPC model. The language lets you describe the
characteristics of the API that you are trying to distribute.

Application
Syntax: Application Simple = com.companyname { … }
Application describes the namespace for the RPC project. Application name will be
used as a prefix on much of the generated source code. From the example above the
com.companyname will be used for the Java package location.

Endpoint
Syntax: Endpoint Simple= 1 { … }
Endpoint describes the interface name for the procedures being distributed. This
statement also has the version number for the interface. You can have multiple
interfaces with the same name with different version numbers. See Versioning.

Data Types
 String

String/string both define ASCII string type. String type can be null, where string
is defined as not null. Empty strings (“”) are considered null.

 Short/Integer/Long

Short/short, Integer/int, Long/long integer types. Short/Integer/Long can be
null, where short/int/long can not be null.

 Float/Double
Float/float, Double/double are decimal types. Float/Double can be null, where
float/double can not be null.

 Date
Date/date represent a calendar date. Date can be null, where date can not be null.

 Timestamp
Timestamp/timestamp represent date and time. Timestamp can be null, where
timestamp can not be null.

 Boolean
Boolean/boolean represent Boolean value. Boolean can be null, where Boolean
can not be null.

 Byte/byte[]
Byte represents a single binary character and may be null.
byte[] represents array is bytes that will be marshaled as a group.

 Character
Character/char represents a single character. Character can be null, where char
can not be null.

 BinaryStream
BinaryStream argument can be passed as an @In argument or returned as a
return value.

If BinaryStream is declared as an @In argument, the method must return void.
This is because the application must start streaming to the variable once the
method returns from the stub. In addition to the BinaryStream @In argument the
method may have other arguments.

If the method returns a BinaryStream, the server-side behaves like a
@SyncReplyMethod method which sends the reply from the application
implementation, and then streams the return value.

Client & Server Method Definitions
Server Singleton {
 @SyncMethod String hello (@In Integer input) raises MyException
};
Client Session {
 @AsyncMethod boolean callback (@In String output) raises MyException;
};

Server and Client define which the RPC is going. Server define a method from
client to server, and Client specifies from server to client.

This syntax also defines whether the endpoint is a Session, or a Singleton
endpoint.

Method Defintions
 Arguments

Methods have arguments and a return value. Arguments can be annotated with
@In, @Inout, @Out, and @NotNull modifiers that indicate the direction in which the
argument must be passed. @NotNull just indicate that the argument can not be
null, and a marshalling error will be thrown.

 Exceptions
Methods can throw application based exceptions. Exceptions can be defined like
the following example. Exception SimpleException {};
Exceptions can also contain members that are defined with the curly braces as
follows. Exception SimpleException { Integer code; };

Data Structures
o Enumeration

Enumeration MyMonth { Jan=1, Feb=2, Mar=3, Apr=4, May=5, Jun=6,
Jul=7, Aug=8, Sept=9, Oct=10, Nov=11, Dec=12 };

 Enumeration MyDay { Sun=1, Mon=2, Tues=3, Wed=4, Thu=5, Fri=6, Sat=7 };

o Bean
 Bean MyTime {
 int hours;
 int minutes;
 int seconds;
 };
 Bean MyDateTime {
 Bean MyDate {
 int year;
 MyMonth month;
 MyDay day;
 } date;
 MyTime time;
 };
 Beans are aggregated data types used for constructing records or just

collections of other data types.

o Array

String[] args
Arrays are variable length lists of data types.

o List
List<String> args
List are collections of data types.

o Exceptions
Exception MyException { int code;};
Exceptions are beans which by default contain a String message, and a
Throwable cause elements. Exception may contain additional members.
Note: Exceptions are not versioned.

Method Types
 Synchronous

@SyncMethod is a synchronous response/response method call. Client send
input arguments to the server, and wait for the return argument response.

6

SyncMethod

Synchronous WebRPC

Encode/
DecodeApplication

Client
Application

Server

Stub

Endpoint

EndPoint

Stub

Wait

return

 Asynchronous

@AsyncMethod is a asynchronous request method call. Client sends input
arguments to the server and immediately returns.

4

ASync

Asynchronous WebRPC

Encode/
DecodeApplication

Client
Application

Server

Stub

Endpoint

EndPoint

Stub

 Batch

@BatchMethod is a asynchronous request method call. Client buffers the method
and its input arguments on the client-side. When a synchronous method call is
made, and previous batch methods are batched to the server. Batched methods are
processed in serial once they arrive on the server.

Batch methods are typically simple methods like variable setters.

5

Batch

Batch WebRPC

Encode/
DecodeApplication

Client
Application

Server

Stub

Endpoint

EndPoint

Stub

 Synchronous Application Reply
@SyncReplyMethod is a synchronous request/reply method that has a special
generated server stub, that is used by the application to send the reply arguments
back to the client. Once the reply has been sent by the server, this action releases
the client from waiting. The server now can do some work asyncrously from the
client, but will not process any more RPC’s until it returns from OnMessage.

In the case where the RPC method is defined as returning a BinaryStream, the
method is automatically promoted from a @SyncMethod to a @SyncSendReply
method. This allows the server to start streaming results to the client, just after the
call to the sendreply stub.

@SyncReplyMethod is also used to avoid argument promotions to ensure the
defined API is strictly defined for the Java mapping. See argument promotions.

8

SyncAppReplyMethod

Synch Reply RPC

Encode/
DecodeApplication

Client
Application

Server

Stub

Endpoint

EndPoint

Stub

Wait

 Synchronous Application Wait

@SyncWaitMethod is a synchronous request/reply method where the application
calls the client stub wait method to wait for the response. This gives the
application more control of the client side events.

In the case where the client defines a method that contains a BinaryStream inout
argument, the method automatically promoted from a @SyncMethod to a
@SyncWaitMethod. This lets the client start streaming the to the server after the
method has been sent.

7

SyncAppWaitMethod

Synch Wait WebRPC

Encode/
DecodeApplication

Client
Application

Server

Stub

Endpoint

EndPoint

Stub

Wait

return

 Asynchronous On Thread
@OnThreadMethod is typically only used once in the case the application a role
reversal or the client and server. This is where the client becomes the server, and
server becomes the client.

It is also used in case where the application wants to implement full duplex
communication between the client and
s

9

OnThreadmethod

On Thread

Encode/
DecodeApplication

Client
Application

Server

Stub

Endpoint

EndPoint

Stub

launch
thread

Servers
 Session

29

Session Server

Client 1 Web Server

Client 2

 Session Server
– This is where each client has it’s own state-full copy of the server’s implementing

class.
– The state lasts for the duration of the WebSockets session with the client
– It’s exactly like each client have it’s own copy of the server.

Implementation
Class

Implementation
Class

 Singleton

31

Singleton Server

Client 1 Web Server

Client 2

 Singleton Server
– This is where there is a single instance of the implementing class, and the server’s

state is shared.
– Therefore multiple client threads of execution are executing on the single singleton

class.
– Implementing class must be thread safe.
– Individual client state can be stored in the sessions user properties.

Implementation
Singleton

Class

